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We derive the probability density for a simple measure of the asymmetry of a 
one-dimensional random walk, namely the ratio of the minimum of the two 
maximum displacements in the positive and negative directions, to the 
maximum. We show that in the diffusion limit the asymmetry is independent of 
time. These results are shown to apply to random walks in which individual 
steps have a stable law distribution as well as to multidimensional random. 
walks. 
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1. I N T R O D U C T I O N  

A random walk with symmetric transition probabilities might be thought 
to exhibit symmetry in all of its significant statistical parameters. That there 
may be striking deviations from this expected symmetry has been 
emphasized in the work of So16 and Stockmayer (1/ and Sol~, ~2'3) although 
the initial observation is due to Kuhn. (41 More recent papers have also 
examined the same phenomenon, using measures of asymmetry based on 
the radius of gyrations. (5 7l In this paper we analyze a simple measure of 
anisotropy whose properties can be calculated in closed form when the 
interval size is large compared to some length characterizing the size of a 
single step. The anisotropy, as measured by a parameter to be introduced 
in the next paragraph will be shown to be asymptotically independent of 
step number, and remains unchanged even when the random walk 
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displacements have a stable law distribution in place of a distribution 
with finite variance increments. Our measure of anisotropy is related to the 
so-called arcsine law for random walks, (8'9) which has long been a part of 
the mathematical literature. 

Consider first a random walk in one dimension. The maximum dis- 
placement in the positive direction after n steps will be denoted by b(n) >10 
and in the negative direction by a(n), where this parameter is also non- 
negative. The measure of anisotropy to be analyzed will be denoted by 
p(n), which is the random variable 

p(n) = min[a(n),  b(n)]/max[a(n), b(n)] (1) 

so that p(n)~< 1. When the variance associated with an individual step of 
the random walk is finite we may pass to the diffusion limit in which the 
random parameter p remains finite with probability one. In the remainder 
of the paper we calculate the probability density of the parameter p, which 
will be denoted by g(p, t), although it will later be shown that for ordinary 
random walks (i.e., not self-avoiding) g(p, t) is independent of time. 

2. F IN ITE  V A R I A N C E  W A L K S  

When the variance a 2 of an individual step is finite we may pass to the 
diffusion limit, in which case we start by calculating an expression for the 
joint density of a(t) and b(t), to be denoted by p(a, b; t). Let Q(a, b; t) 
denote the probability that a diffusing particle initially at x = 0 remains 
within the interval ( - a ,  b) for a time t. A simple argument then shows that 
p(a, b; t) can be expressed in terms of Q(a, b; t) as 

OQ(a, b; t) 
p(a, b; t) = ~a ~b (2) 

Let qS(x) denote the error function 

~ ( x ) = ( 2 ~ )  -1/2 exp = u 2 du (3) 
- - o o  

It has been shown (1~ that Q(a, b; t) can be expressed as 

Q(a,b;t)= ~ ( - 1 1  j ~ + ~  (4) 
j ~  - -oO 
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Since this series is formally divergent, we will interpret it as an Abelian 
sum. (11) That is to say, we will interpret it as 

Q(a, b; t ) =  lim ( _ 1 )  j { ~  ( a ( l + j ) + b f ~  

{aj+ b(1 
 b-31  (5) 

The sum on the right-hand side of this equation is clearly convergent when 
[xl < 1. The combination of Eqs. (2) and (5) and some further algebraic 
manipulations allow us to express p(a, b; t) in the form 

1 
p(a, b; t )=  xliml_ 27tl/2(Dt)3/2 

• ~ ( -1 )J+l j ( j+ l ) { [a ( l+j )+bj]exp(  - [a(l+j)+bj]2~ 

+[b( l+j )+aj]exp(  [aj+b(l+j)]2)} x j (6) 
4Dt 

Let us first suppose that a ~< b. The contribution from this possibility to 
g(p, f) can be found by changing variables from (a, b) to (p, b), where p is 
defined in Eq. (1), and integrating over all possible values of b. The second 
contribution comes by a similar calculation from b~<a, where we now 
integrate over all values of a. Thus we write 

g(p, t) = ap(a, pa; t) da + bp(pb, b; t) db 

= 2  lim ~ ( - 1 ) J + l j ( j + l ) {  1 1 } ~ 1 -  [p j+j+l]  2q [ j+p( j+l ) ]  2 xj 
j = l  

(7) 

It is interesting to verify that g(p) defined in Eq. (7) is properly normalized. 
If we perform term-by-term integration, we find 

io o g(p) dp = 2  lira ( -  1 ) J + l j ( j +  1) + 
x ~ l - -  j = l  2 j ' - ~ l  

= 2  lira ~ (--I)J+IxJ=2 lim x _ x ~ l -  j= 1 x ~ l -  x + l  1 (8) 
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We have expressed g(p) in terms of a series that is only convergent in 
the Abelian sense. It is useful to find a numerically computable represen- 
tation for this function. This can be done adding and subtracting 
appropriate terms in Eq. (7). Thus, we write 

g(p)=2 lim ~ ( - 1 ) J + l j ( j + l ) {  1 _ 1 
x ~ l  j = l  [PJ+J+I] 2 (1 + P ) 2 j :  

1 1 1 1 ) 
+ ( l + p ) 2 j  2 f - [ j+p( j+l ) ]  2 ( l + p ) Z j  z f - ( l + p ) 2 j  2 x j (9) 

The second term in the brackets on the right-hand side, for example, has 
the effect of subtracting out the value of the first term at j =  c~, thereby 
converting the formally divergent sum to a formally convergent one when 
we set x = 1. The third and sixth terms in brackets in this last equation can 
be summed separately from the remaining terms, finally allowing us to 
express g(p) as 

g ( p )  - _ _  
1) gl(p) 

4 xli m ~, (_1)#+  , 1 + 7  xJ-t - ( l + p )  2 ( l + p )  z 
J = l  

2 + 4 In 2 gl(P) § 
(l+p) 2 (l+p) 2 (]0) 

Fig. 1. 
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in which the function gl(P) can be written as a series convergent in the 
ordinary sense: 

. 2 j ( l + p ) + l  ziP(! (111 
gl(P) = 2  ~ ( - -1)  j 1+7)~[-~-~-p-~-~-1~2-~ [j(l+p)+p]2J 

j = l  

Figure 1 shows a plot o fg (p )  as a function of p. The maximum value is at 
0 and the function decreases monotonically toward the minimum at p = 1. 
This behavior is in qualitative agreement with the prediction of the arcsine 
law. The average value of p is found to be approximately 0.3466 with the 
associated standard deviation a =0.2761. 

3. S T A B L E  L A W  W A L K S  

A point of further interest is that the form of g(p) found in Eq. (6) or 
Eq. (10) is not peculiar to random walks whose steps have finite variances. 
Consider a symmetric random walk in which the probability of making a 
displacement o f j  sites goes asymptotically like 

p(j)~l/ljl  ~+~, 0 < c ~ < l  (12) 

Working in the limits a, b ---, oo, one finds for the function Q(a, b; n) 

sin[~z(2j + 1)b/(a + b)]'~ 
+ J (13) 

where k is a constant that plays no further role and without loss of 
generality may be set equal to 1. In order to obtain results analogous to 
those in Eqs. (6) and (11), we make a Poisson transformation of this 
equation, which gives 

where 

f 
oc~ 

f(z) = e x p ( -  Ix[ ~) sin(zx) dx (15) 
- - o o  X 
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The reader will notice that the sum in Eq. (14) is again divergent in the 
ordinary sense if we make use of the estimate limz~o~ f(z)--~z. This 
divergence is eliminated once again by interpreting Eq. (14) as 

1 
Q(a, b; n)-~xliml_ . ~, 

j =  o o  

(16) 

If we again transform variables from (a, b) to (a, p) and (a, b) to (p, b) and 
perform the integrations as in Eq. (6), we obtain results identical to those 
found for the case of finite-variance random walks, since these depend only 
on the fact that the argument in Eq. (14) is linear in the variables a and b. 

4. T H E  T W O - D I M E N S I O N A L  D I F F U S I O N  P R O C E S S  

We consider a generalization of the asymmetry parameter p in two 
dimensions, showing that it is independent of time for isotropic diffusion 
processes or random walks. The same reasoning may be generalized to 
show that the conclusion is valid in any number of dimensions. Let 
Q(a, b; t) = Q(a~, ha, a2, b2; t) be the probability that at time t the random 
walker has remained within a rectangle specified by the four lines x = a~, 
x = a2, y = bl, y = b2 .  Then it is easily shown that provided that the dif- 
fusion tensor D is diagonal with equal elements, Q(a, b; t) is factorable in 
the sense that 

Q(a, b; t)= Q(al, bl ; t) Q(a2, b2; t) (17) 

where Q(a, b; t) is just the function given in Eq. (5). The joint probability 
density for (a, b) at time t is therefore also a product 

O2Q(al, bl ; t)02Q(a2, b2; t) 
p(a, b; t ) -  (18) 

0al ~3bl c3a2 r 

Without loss of generality we can choose a I = min(a, b). Three cases must 
now be considered, depending on whether bl, b2, or a 2 is the maximum of 
all of the displacements. Let us suppose first that bl is the maximum. Then 
the joint density of the minimum displacement a and the maximum 
displacement b at time t is 

~?2Q(a, b; t) 
pl(a,b;t) ~a~?b Q ( b - a , b - a ; t )  (19) 
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which is found from Eq. (17). 

p2(a, b; t)=OQ(a'oabl; t) b~:b 

Similarly, if a2 is the maximum, we have 

OQ(b,obb2; t) b2= b a (20) 

Finally, the third contribution is 

p3(a'b;t)-OQ(a'bl;t)Oa bl=b a OQ(a2'b;t)~?b ~2=b-~ (21) 

The joint density p(a, b; t) is the sum of the three components  given in 
Eqs. (19)-(21), and the relation between p(a, b; t) and g(p) is just that 
given in the first line of Eq. (6). Since Q(a, b; t) is given by Eq. (4), time- 
dependent factors multiply the detailed expressions for the derivatives 
appearing in Eqs. (19)-(21), but these drop out when the integrals over p 
are evaluated, just as in the one-dimensional case. Hence the function 
g(p; t) is again independent of time, although the series that must be 
evaluated in order to find the detailed form of g(p) are much more com- 
plicated than in one dimension. We have not investigated the situation 
when the random walks follow a higher dimensional stable process, but 
expect that in the appropriate  limit these will also exhibit the same "frozen- 
in" asymmetry. We also expect that asymmetry effects for self-avoiding 
random walks would be generally much greater than those for the simple 
random walks of the present paper. 

The main point made by the results of this investigation is that there is 
no unique characterization of the symmetry of a random walk, and the 
conclusions drawn from the study of one symmetry parameter  do not 
necessarily apply in the case of any other. It would be of some interest 
to extend the present calculations to other classes of random walks 
exemplified by SAWs, as has been done by Rudnick and Gaspari.  (5) 
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